get in touch

RES2DINV(GEOTOMO)

The RES2DINVx32/x64 programs use the smoothness-constrained Gauss-Newton least-squares method inversion technique to produce a 2D model of the subsurface from the apparent resistivity data alone. It is completely automatic and the user does not even have to supply a starting model.

The RES2DINVx32/x64 programs use the smoothness-constrained Gauss-Newton least-squares method inversion technique to produce a 2D model of the subsurface from the apparent resistivity data alone. It is completely automatic and the user does not even have to supply a starting model. This program has been optimised for the inversion of large data sets. The use of available memory is optimised so as to reduce the computer time by minimising disk swapping. On a modern microcomputer, the inversion of a single pseudosection is usually completed within seconds to minutes. Four different techniques for topographic modelling are available in this program. Together with the free 2D forward modeling program RES2DMOD, it forms a complete 2D resistivity forward modeling and inversion package.

The program will automatically choose the optimum inversion parameters for a particular data set. However, the parameters which affects the inversion process can be modified by the user. The smoothing filter can be adjusted to emphasize resistivity variations in the vertical or horizontal directions. Two different variations of the smoothness constrained least-squares method are provided; one optimised for areas where the subsurface resistivity varies in a smooth manner (such as chemical plumes), and another optimised for areas with sharp boundaries (such as massive ore bodies). A robust data inversion option is also available to reduce the effect of noisy data points. Resistivity information from borehole and other sources can also be included to constrain the inversion process. The complex resistivity method (Kenma, A., Binley, A., Ramirez, A. and Daily, W., 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77, 11-18.) is used for IP data inversion.

The figure below shows an example from an electrical imaging survey in an area with fairly complex subsurface geology and significant surface topography. This survey was carried out across a circular mound which is thought to contain some important Irish archaeological burial chambers (Waddell, J. and Barton, K, 1995, Seeing beneath Rathcroghan. Archaeology Ireland, Vol. 9, No. 1, 38-41.). The inversion of this data set, which has 67 electrode positions and 339 data points, takes seconds on a modern PC.

 

The second example is from a combined resistivity and IP survey over the Magusi River massive sulphide ore (Edwards L.S., 1977. A modified pseudosection for resistivity and induced-polarization. Geophysics, 42, 1020-1036.). This survey was conducted with 30.5 meters (100 feet), 61.0 meters (200 feet) and 91.4 meters (300 feet) dipoles. The resulting pseudosection has a complex distribution of the data points with overlapping data levels measured with different dipole spacings. The measured apparent resistivity and IP pseudosections, together with the model sections obtained are shown in Figure 2. The ore body shows up as a distinct low resistivity body with high IP values near the middle of the survey line in the model sections. Note the sharp boundaries between ore body and the surrounding rocks.


Figure 2. Magusi River ore body survey. (a) Apparent resistivity pseudosection, (b) resistivity model section, (c) apparent metal factor pseudosection and (d) metal factor model section.
 

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!

Request a Custom Quote

Please specify the requested product in the "Requirements" field below. Allow 1 business day for a Datacode representative to respond. Thank You!